Cardiolipin promotes electron transport between ubiquinone and complex I to rescue PINK1 deficiency

نویسندگان

  • Melissa Vos
  • Ann Geens
  • Claudia Böhm
  • Liesbeth Deaulmerie
  • Jef Swerts
  • Matteo Rossi
  • Katleen Craessaerts
  • Elvira P Leites
  • Philip Seibler
  • Aleksandar Rakovic
  • Thora Lohnau
  • Bart De Strooper
  • Sarah-Maria Fendt
  • Vanessa A Morais
  • Christine Klein
  • Patrik Verstreken
چکیده

PINK1 is mutated in Parkinson's disease (PD), and mutations cause mitochondrial defects that include inefficient electron transport between complex I and ubiquinone. Neurodegeneration is also connected to changes in lipid homeostasis, but how these are related to PINK1-induced mitochondrial dysfunction is unknown. Based on an unbiased genetic screen, we found that partial genetic and pharmacological inhibition of fatty acid synthase (FASN) suppresses toxicity induced by PINK1 deficiency in flies, mouse cells, patient-derived fibroblasts, and induced pluripotent stem cell-derived dopaminergic neurons. Lower FASN activity in PINK1 mutants decreases palmitate levels and increases the levels of cardiolipin (CL), a mitochondrial inner membrane-specific lipid. Direct supplementation of CL to isolated mitochondria not only rescues the PINK1-induced complex I defects but also rescues the inefficient electron transfer between complex I and ubiquinone in specific mutants. Our data indicate that genetic or pharmacologic inhibition of FASN to increase CL levels bypasses the enzymatic defects at complex I in a PD model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Yeast Complex I Equivalent NADH Dehydrogenase Rescues pink1 Mutants

Pink1 is a mitochondrial kinase involved in Parkinson's disease, and loss of Pink1 function affects mitochondrial morphology via a pathway involving Parkin and components of the mitochondrial remodeling machinery. Pink1 loss also affects the enzymatic activity of isolated Complex I of the electron transport chain (ETC); however, the primary defect in pink1 mutants is unclear. We tested the hypo...

متن کامل

Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function

Mutations of the mitochondrial PTEN (phosphatase and tensin homologue)-induced kinase1 (PINK1) are important causes of recessive Parkinson disease (PD). Studies on loss of function and overexpression implicate PINK1 in apoptosis, abnormal mitochondrial morphology, impaired dopamine release and motor deficits. However, the fundamental mechanism underlying these various phenotypes remains to be c...

متن کامل

Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain.

Almost complete phospholipid depletion has been achieved for Complex I and III of the mitochondrial respiratory chain using a technique that involves elution on Sephadex LH-20 in the presence of Triton X-100. Enzymic activity may be regenerated by replenishment with phospholipid. However, restoration of enzymic activity in phospholipid-depleted Complex I and III has been shown to require the pr...

متن کامل

Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients.

Mutations in the human TAZ gene are associated with Barth Syndrome, an often fatal X-linked disorder that presents with cardiomyopathy and neutropenia. The TAZ gene encodes Tafazzin, a putative phospholipid acyltranferase that is involved in the remodeling of cardiolipin, a phospholipid unique to the inner mitochondrial membrane. It has been shown that the disruption of the Tafazzin gene in yea...

متن کامل

Mitochondrial respiration without ubiquinone biosynthesis.

Ubiquinone (UQ), a.k.a. coenzyme Q, is a redox-active lipid that participates in several cellular processes, in particular mitochondrial electron transport. Primary UQ deficiency is a rare but severely debilitating condition. Mclk1 (a.k.a. Coq7) encodes a conserved mitochondrial enzyme that is necessary for UQ biosynthesis. We engineered conditional Mclk1 knockout models to study pathogenic eff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 216  شماره 

صفحات  -

تاریخ انتشار 2017